Radical Sign
Published: 6 Aug 2023
Mathematics sometimes feels like a magical world full of interesting symbols and concepts. One such symbol that you might have come across is the radical sign $ ( \sqrt{ \quad } ) $. The radical sign $ ( \sqrt{ \quad } ) $ might look like a simple little symbol, but it holds a significant role in mathematics.
So, embrace the power of radicals, and let them guide you through the captivating landscapes of algebra and beyond.
Radical Sign MCQs
1. In $ \sqrt[n]{a},\ then \ \sqrt{ \quad } $ is calledO Index
O Radical
O Radicand
O All of them
Show Answer
Radical
Explanation:
2. In $ \sqrt[n]{a}, \ then \ a $ is called
O Index
O Radical
O Radicand
O All of them
Show Answer
Radicand
Explanation:
3. In $ \sqrt[n]{a}, \ then \ n $ is called
O Index
O Radical
O Radicand
O All of them
Show Answer
Index
Explanation:
4. The exponential form of $ \sqrt[n]{a} $ is
O $ a^n $
O $ a^2 $
O $ a^{\frac{2}{n}} $
O $ a^{\frac{1}{n}} $
Show Answer
$ a^{\frac{1}{n}} $
Explanation:
It is the General Exponential form of any radical form
5. $ \sqrt{2} $ , the index is
O 0
O 1
O 2
O All of them
Show Answer
2
Explanation:
If the index is not given means it is 2 which we cannot write.
6. $ \sqrt{1}= $
O 1
O 0
O $ -1 $
O 2
Show Answer
1
Explanation:
Square root of 1 will always be 1.
7. $ \sqrt[3]{1}= $
O 1
O 0
O $ -1 $
O 2
Show Answer
1
Explanation:
Cube root of 1 will always be 1
8. $ \sqrt[3]{1}= $
O 1
O 0
O $ -1 $
O 2
Show Answer
1
Explanation:
Forth root of 1 will always be 1.
9. $ \sqrt{36}= $
O 6
O 0
O $ -6 $
O 4
Show Answer
6
Explanation:
$ \sqrt{36}=\sqrt{6^2} $
$ \sqrt{36}=(6^2)^\frac{1}{2} $
$ \sqrt{36}=6 $
10. $ \sqrt[3]{216}= $
O 4
O 5
O 6
O 7
Show Answer
6
Explanation:
$ \sqrt[3]{216}=\sqrt[3]{6^3} $
$ \sqrt[3]{216}=(6^3)^\frac{1}{3} $
$ \sqrt[3]{216}=6 $
11. $ \sqrt[4]{256}= $
O 4
O 5
O 6
O 7
Show Answer
4
Explanation:
$ \sqrt[4]{256}=\sqrt[4]{4^4} $
$ \sqrt[4]{256}=(4^4)^\frac{1}{4} $
$ \sqrt[4]{256}=4 $
12. $ \sqrt[4]{625}= $
O 4
O 5
O 6
O 7
Show Answer
5
Explanation:
$ \sqrt[4]{625}=\sqrt[4]{5^4} $
$ \sqrt[4]{625}=(5^4)^\frac{1}{4} $
$ \sqrt[4]{625}=5 $
13. $ \sqrt[4]{1296}= $
O 4
O 5
O 6
O 7
Show Answer
6
Explanation:
$ \sqrt[4]{1296}=\sqrt[4]{6^4} $
$ \sqrt[4]{1296}=(6^4)^\frac{1}{4} $
$ \sqrt[4]{1296}=6 $
14. If $ x^2=16 $ , then x=
O 4
O $ -4 $
O Both a & b
O None of these
Show Answer
Both a & b
Explanation:
This means what numbers squared becomes 16. Thus $ x \ can \ be \ 4 \ or \ -4 \ like \ (4)^2=16 \ and \ also \ (-4)^2=16. $
Hence the value of $ x=\pm 4 $.
15. If $ x=\sqrt{16} $ , then $ x= $
O 4
O $ -4 $
O Both a & b
O None of these
Show Answer
4
Explanation:
Here $ x $ is the principal square root of 16, which has always a positive value such is $ x=4 $.
16. $ \sqrt[4]{1296} $ is called root
O $ 4^{th} $
O $ 5^{th} $
O $ 2^{nd} $
O Square
Show Answer
$ 4^{th} $
Explanation:
Here is the index of 4, thus it is called $ 4^{th} $ root.
17. $ \sqrt[3]{64}= $
O 4
O $ -4 $
O Imaginary
O None of these
Show Answer
4
Explanation:
$ \sqrt[3]{64}=\sqrt[3]{4^3} $
$ \sqrt[3]{64}=(4^3)^\frac{1}{3} $
$ \sqrt[3]{64}=4 $
18. $ \sqrt[3]{-64}= $
O 4
O $ -4 $
O Imaginary
O None of these
Show Answer
$ -4 $
Explanation:
If a is negative, then n must be odd for the nth root of a to be a real number.
$ \sqrt[3]{-64}=\sqrt[3]{(-4)^3} $
$ \sqrt[3]{-64}=\left[(-4)^3\right]^\frac{1}{3} $
$ \sqrt[3]{-64}=-4 $
19. $ \sqrt{-64}= $
O 4
O $ -4 $
O Imaginary
O None of these
Show Answer
Imaginary
Explanation:
If radicand is negative, then index must be odd, here the index is 2 which is even.
Hence, $ \sqrt{-64}= $ imaginary
20. $ \sqrt[n]{0}= $
O 1
O 0
O n
O $ -0 $
Show Answer
0
Explanation:
If $ a $ is zero, then
$ \sqrt[n]{0}=0 $
21. $ \sqrt[n]{ab}= $
O $ \sqrt[n]{a} \cdot \sqrt[n]{b} $
O $ \sqrt[n]{a}+\sqrt[n]{b} $
O $ \sqrt[n]{a} \cdot \sqrt{b} $
O $ \sqrt{a} \cdot \sqrt[n]{b} $
Show Answer
$ \sqrt[n]{a} \cdot \sqrt[n]{b} $
Explanation:
It is the product rule of Radical.
22. $ \sqrt[n]{\frac{a}{b}}= $
O $ \sqrt[n]{a} \cdot \sqrt[n]{b} $
O $ \sqrt[n]{a}+\sqrt[n]{b} $
O $ \sqrt[n]{a}-\sqrt[n]{b} $
O $ \frac{\sqrt[n]{a}}{\sqrt[n]{b}} $
Show Answer
$ \frac{\sqrt[n]{a}}{\sqrt[n]{b}} $
Explanation:
It is the Quotient rule of Radicand.
23. $ 2 \sqrt{\frac{150 x y}{3 x}}= $
O $ 2 \sqrt{y} $
O $ 10 \sqrt{y} $
O $ 2 \sqrt{2 y} $
O $ 10 \sqrt{2 y} $
Show Answer
$ 10 \sqrt{2 y} $
Explanation:
$ 2 \sqrt{\frac{150 x y}{3 x}}=2 \sqrt{50y} $
$ 2 \sqrt{\frac{150 x y}{3 x}}=2 \sqrt{25 \times 2y} $
$ 2 \sqrt{\frac{150 x y}{3 x}}=2 \times 5 \sqrt{2y} $
$ 2 \sqrt{\frac{150 x y}{3 x}}=10 \sqrt{2y} $
24. $ \sqrt[n]{a}= $
O $ a^{\frac{m}{n}} $
O $ a^{\frac{1}{n}} $
O $ a^{\frac{n}{m}} $
O All of them
Show Answer
$ a^{\frac{1}{n}} $
Explanation:
It is the exponential form of radical.
25. $ a^{\frac{m}{n}}= $
O $ \sqrt[n]{a} $
O $ \sqrt[n]{a^m} $
O Both a & b
O None of these
Show Answer
$ \sqrt[n]{a^m} $
Explanation:
$ a^{\frac{m}{n}}=(a^m)^\frac{1}{n} $
$ a^{\frac{m}{n}}=\sqrt[n]{a^m} $
26. $ \sqrt{13} $ is ________ form
O Exponential
O Radical
O Quadratic
O Cubic
Show Answer
Radical
Explanation:
This is the way to represent the radical form.
27. $ 13^2 $ is ________ form.
O Exponential
O Radical
O Quadratic
O Cubic
Show Answer
Exponential
Explanation:
This is the way to represent the Exponential form.
28. $ 2^4= $
O 16
O $ -16 $
O Both a & b
O None of these
Show Answer
16
Explanation:
$ 2^4= 2 \times 2 \times 2 \times 2 $
$ 2^4= 16 $
29. $ -2^4= $
O 16
O $ -16 $
O Both a & b
O None of these
Show Answer
$ -16 $
Explanation:
$ -2^4= -(2 \times 2 \times 2 \times 2) $
$ -2^4= -16 $
30. $ (-2)^4= $
O 16
O $ -16 $
O Both a & b
O None of these
Show Answer
16
Explanation:
$ (-2)^4= -2 \times -2 \times -2 \times -2 $
$ (-2)^4= 16 $
31. $ \sqrt[n]{a^m}= $
O $ a^{\frac{m}{n}} $
O $ a^{\frac{1}{n}} $
O $ a^{\frac{n}{m}} $
O All of them
Show Answer
$ a^{\frac{m}{n}} $
Explanation:
$ \sqrt[n]{a^m}=(a^m)^\frac{1}{n} $
$ \sqrt[n]{a^m}= a^{\frac{m}{n}} $
- Be Respectful
- Stay Relevant
- Stay Positive
- True Feedback
- Encourage Discussion
- Avoid Spamming
- No Fake News
- Don't Copy-Paste
- No Personal Attacks
- Be Respectful
- Stay Relevant
- Stay Positive
- True Feedback
- Encourage Discussion
- Avoid Spamming
- No Fake News
- Don't Copy-Paste
- No Personal Attacks