Ch # 3 Logarithm Review Excercise Updated: 11 Apr 2021 33 Welcome to your Ch # 3 Logarithm Review Excercise 1. \[log_{9}{\frac{1}{81}}=\] \[-1\] \[-2\] 2 Does not exist 2. \[log_{2}8=x \] then \[x=\] 64 \[3^2\] 3 \[2^8\] 3. Base of common log is 10 \[e\] \[\pi\] 5 4. \[log \sqrt{10}=\] \[-1\] \[-\frac{1}{2}\] \[\frac{1}{2}\] 2 5. for any non-zero value of \[x,\] \[x=\] 2 1 0 10 6. Rewrite \[t=log_{b}m\] as an exponential equation \[t=m^b\] \[b^m=1\] \[m=b^t\] \[m^t=b\] 7. Characteristic of 0.000059 is \[-5\] \[5\] \[-4\] \[4\] 8. \[log_{7}{\frac{1}{\sqrt{7}}}\] \[-1\] \[-\frac{1}{2}\] \[\frac{1}{2}\] 2 9. Base of natural log is 10 \[e\] \[\pi\] 1 10. \[logm+logn=\] \[logmlogn\] \[logm-logn\] \[logmn\] \[log\frac{m}{n}\] 11. 0.069 can be written in scientific notation as \[6.9\times10^3\] \[6.9\times10^{-2}\] \[0.69\times10^3\] \[69\times10^2\] 12. \[lnx-2lny\] \[ln{\frac{x}{y}}\] \[lnxy^2\] \[ln{\frac{x^2}{y}}\] \[ln{\frac{x}{y^2}}\] Time is Up! Time's up
Please Write Your Comments