Ch # 3 Logarithm Review Excercise Welcome to your Ch # 3 Logarithm Review Excercise 1. \[log_{9}{\frac{1}{81}}=\]\[-1\]\[-2\]2Does not exist 2. \[log_{2}8=x \] then \[x=\]64\[3^2\]3\[2^8\] 3. Base of common log is10\[e\]\[\pi\]5 4. \[log \sqrt{10}=\]\[-1\]\[-\frac{1}{2}\]\[\frac{1}{2}\]2 5. for any non-zero value of \[x,\] \[x=\]21010 6. Rewrite \[t=log_{b}m\] as an exponential equation\[t=m^b\]\[b^m=1\]\[m=b^t\]\[m^t=b\] 7. Characteristic of 0.000059 is\[-5\]\[5\]\[-4\]\[4\] 8. \[log_{7}{\frac{1}{\sqrt{7}}}\]\[-1\]\[-\frac{1}{2}\]\[\frac{1}{2}\]2 9. Base of natural log is10\[e\]\[\pi\]1 10. \[logm+logn=\]\[logmlogn\]\[logm-logn\]\[logmn\]\[log\frac{m}{n}\] 11. 0.069 can be written in scientific notation as\[6.9\times10^3\]\[6.9\times10^{-2}\]\[0.69\times10^3\]\[69\times10^2\] 12. \[lnx-2lny\]\[ln{\frac{x}{y}}\]\[lnxy^2\]\[ln{\frac{x^2}{y}}\]\[ln{\frac{x}{y^2}}\] Time is Up!